Curve name | $X_{36o}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{36}$ | |||||||||
Curves that $X_{36o}$ minimally covers | ||||||||||
Curves that minimally cover $X_{36o}$ | ||||||||||
Curves that minimally cover $X_{36o}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{8} + 864t^{7} - 13824t^{5} + 25920t^{4} + 13824t^{3} - 27648t^{2}\] \[B(t) = -432t^{12} + 5184t^{11} - 10368t^{10} - 96768t^{9} + 445824t^{8} - 41472t^{7} - 2515968t^{6} + 3649536t^{5} - 1327104t^{4} + 1769472t^{3}\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 279x + 150880$, with conductor $693$ | |||||||||
Generic density of odd order reductions | $19/168$ |