Curve name | $X_{36p}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{36}$ | ||||||||||||
Curves that $X_{36p}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{36p}$ | |||||||||||||
Curves that minimally cover $X_{36p}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{6} - 864t^{5} + 13824t^{3} + 25920t^{2} - 13824t - 27648\] \[B(t) = 432t^{9} + 5184t^{8} + 10368t^{7} - 96768t^{6} - 445824t^{5} - 41472t^{4} + 2515968t^{3} + 3649536t^{2} + 1327104t + 1769472\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 46845x + 23238625$, with conductor $990$ | ||||||||||||
Generic density of odd order reductions | $83/672$ |