Curve name | $X_{42b}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 6 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{42}$ | |||||||||
Curves that $X_{42b}$ minimally covers | ||||||||||
Curves that minimally cover $X_{42b}$ | ||||||||||
Curves that minimally cover $X_{42b}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 216t^{8} - 1728t^{7} - 17280t^{6} + 13824t^{5} + 248832t^{4} + 110592t^{3} - 1105920t^{2} - 884736t + 884736\] \[B(t) = 4320t^{12} + 41472t^{11} - 41472t^{10} - 1105920t^{9} - 165888t^{8} + 13271040t^{7} - 106168320t^{5} + 10616832t^{4} + 566231040t^{3} + 169869312t^{2} - 1358954496t - 1132462080\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 61x + 261$, with conductor $640$ | |||||||||
Generic density of odd order reductions | $1427/5376$ |