Curve name | $X_{42}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 2 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{10}$ | |||||||||
Curves that $X_{42}$ minimally covers | $X_{10}$, $X_{16}$, $X_{18}$ | |||||||||
Curves that minimally cover $X_{42}$ | $X_{108}$, $X_{42a}$, $X_{42b}$, $X_{42c}$, $X_{42d}$ | |||||||||
Curves that minimally cover $X_{42}$ and have infinitely many rational points. | $X_{108}$, $X_{42a}$, $X_{42b}$, $X_{42c}$, $X_{42d}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{42}) = \mathbb{Q}(f_{42}), f_{10} = \frac{f_{42}^{2} - 8}{f_{42}^{2} + 8f_{42} + 8}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 49x + 49$, with conductor $4480$ | |||||||||
Generic density of odd order reductions | $2659/10752$ |