Curve name | $X_{42c}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 2 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{42}$ | ||||||||||||
Curves that $X_{42c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{42c}$ | |||||||||||||
Curves that minimally cover $X_{42c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 54t^{12} - 6048t^{10} - 41472t^{9} - 72576t^{8} + 331776t^{7} + 1880064t^{6} + 2654208t^{5} - 4644864t^{4} - 21233664t^{3} - 24772608t^{2} + 14155776\] \[B(t) = -540t^{18} - 11664t^{17} - 95904t^{16} - 311040t^{15} + 414720t^{14} + 6469632t^{13} + 15704064t^{12} - 19906560t^{11} - 145981440t^{10} + 1167851520t^{8} + 1274019840t^{7} - 8040480768t^{6} - 26499612672t^{5} - 13589544960t^{4} + 81537269760t^{3} + 201125265408t^{2} + 195689447424t + 72477573120\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 383x + 3887$, with conductor $3200$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |