Curve name | $X_{42d}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{42}$ | |||||||||
Curves that $X_{42d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{42d}$ | ||||||||||
Curves that minimally cover $X_{42d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 54t^{8} - 432t^{7} - 4320t^{6} + 3456t^{5} + 62208t^{4} + 27648t^{3} - 276480t^{2} - 221184t + 221184\] \[B(t) = 540t^{12} + 5184t^{11} - 5184t^{10} - 138240t^{9} - 20736t^{8} + 1658880t^{7} - 13271040t^{5} + 1327104t^{4} + 70778880t^{3} + 21233664t^{2} - 169869312t - 141557760\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 15x - 25$, with conductor $640$ | |||||||||
Generic density of odd order reductions | $401/1792$ |