Curve name | $X_{58d}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 4 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{58}$ | |||||||||
Curves that $X_{58d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{58d}$ | ||||||||||
Curves that minimally cover $X_{58d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{14} + 216t^{12} - 1620t^{10} + 3024t^{8} - 1620t^{6} + 216t^{4} - 108t^{2}\] \[B(t) = 432t^{21} - 1296t^{19} - 12960t^{17} + 42336t^{15} - 57024t^{13} + 57024t^{11} - 42336t^{9} + 12960t^{7} + 1296t^{5} - 432t^{3}\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 117005x + 14142372$, with conductor $2925$ | |||||||||
Generic density of odd order reductions | $307/2688$ |