Curve name | $X_{58}$ | ||||||
Index | $24$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 2 & 1 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | |||||||
Chosen covering | $X_{23}$ | ||||||
Curves that $X_{58}$ minimally covers | $X_{23}$, $X_{24}$, $X_{25}$ | ||||||
Curves that minimally cover $X_{58}$ | $X_{183}$, $X_{186}$, $X_{187}$, $X_{189}$, $X_{248}$, $X_{249}$, $X_{251}$, $X_{255}$, $X_{357}$, $X_{58a}$, $X_{58b}$, $X_{58c}$, $X_{58d}$, $X_{58e}$, $X_{58f}$, $X_{58g}$, $X_{58h}$, $X_{58i}$, $X_{58j}$, $X_{58k}$ | ||||||
Curves that minimally cover $X_{58}$ and have infinitely many rational points. | $X_{183}$, $X_{187}$, $X_{189}$, $X_{58a}$, $X_{58b}$, $X_{58c}$, $X_{58d}$, $X_{58e}$, $X_{58f}$, $X_{58g}$, $X_{58h}$, $X_{58i}$, $X_{58j}$, $X_{58k}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{58}) = \mathbb{Q}(f_{58}), f_{23} = \frac{f_{58}^{2} + 2f_{58} - 1}{f_{58}^{2} + 1}\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 40807260x - 94524898325$, with conductor $6435$ | ||||||
Generic density of odd order reductions | $19/168$ |