Curve name  $X_{58f}$  
Index  $48$  
Level  $8$  
Genus  $0$  
Does the subgroup contain $I$?  No  
Generating matrices  $ \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 4 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$  
Images in lower levels 


Meaning/Special name  
Chosen covering  $X_{58}$  
Curves that $X_{58f}$ minimally covers  
Curves that minimally cover $X_{58f}$  
Curves that minimally cover $X_{58f}$ and have infinitely many rational points.  
Model  $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 108t^{16}  1296t^{12} + 2808t^{8}  1296t^{4}  108\] \[B(t) = 432t^{24}  15552t^{20} + 29808t^{16}  29808t^{8} + 15552t^{4}  432\]  
Info about rational points  
Comments on finding rational points  None  
Elliptic curve whose $2$adic image is the subgroup  $y^2 = x^3  50620908x + 127002734768$, with conductor $486720$  
Generic density of odd order reductions  $307/2688$ 