The modular curve $X_{58g}$

Curve name $X_{58g}$
Index $48$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $\left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$
Images in lower levels
 Level Index of image Corresponding curve $2$ $6$ $X_{8}$ $4$ $24$ $X_{58}$
Meaning/Special name
Chosen covering $X_{58}$
Curves that $X_{58g}$ minimally covers
Curves that minimally cover $X_{58g}$
Curves that minimally cover $X_{58g}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by $y^2 = x^3 + A(t)x + B(t), \text{ where}$ $A(t) = -27t^{18} - 324t^{14} + 702t^{10} - 324t^{6} - 27t^{2}$ $B(t) = 54t^{27} - 1944t^{23} + 3726t^{19} - 3726t^{11} + 1944t^{7} - 54t^{3}$
Elliptic curve whose $2$-adic image is the subgroup $y^2 + xy = x^3 - x^2 - 19773792x + 31011470491$, with conductor $38025$
Generic density of odd order reductions $307/2688$