Curve name | $X_{612}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $3$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{246}$ | ||||||||||||
Curves that $X_{612}$ minimally covers | $X_{246}$, $X_{313}$, $X_{314}$ | ||||||||||||
Curves that minimally cover $X_{612}$ | |||||||||||||
Curves that minimally cover $X_{612}$ and have infinitely many rational points. | |||||||||||||
Model | A model was not computed. This curve is covered by $X_{52}$, which only has finitely many rational points. | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | None | ||||||||||||
Generic density of odd order reductions | N/A |