| Curve name |
$X_{62h}$ |
| Index |
$48$ |
| Level |
$8$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{62}$ |
| Curves that $X_{62h}$ minimally covers |
|
| Curves that minimally cover $X_{62h}$ |
|
| Curves that minimally cover $X_{62h}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{12} + 108t^{10} - 1620t^{8} + 6048t^{6} - 6480t^{4} + 1728t^{2} -
1728\]
\[B(t) = 54t^{18} - 324t^{16} - 6480t^{14} + 42336t^{12} - 114048t^{10} +
228096t^{8} - 338688t^{6} + 207360t^{4} + 41472t^{2} - 27648\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 + x^2 - 181512x - 9647100$, with conductor $25872$ |
| Generic density of odd order reductions |
$193/1792$ |