Curve name | $X_{655}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $3$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 10 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 25 \\ 6 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{296}$ | |||||||||||||||
Curves that $X_{655}$ minimally covers | $X_{296}$ | |||||||||||||||
Curves that minimally cover $X_{655}$ | ||||||||||||||||
Curves that minimally cover $X_{655}$ and have infinitely many rational points. | ||||||||||||||||
Model | A model was not computed. This curve is covered by $X_{162}$, which only has finitely many rational points. | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | None | |||||||||||||||
Generic density of odd order reductions | N/A |