The modular curve $X_{689}$

Curve name $X_{689}$
Index $96$
Level $32$
Genus $5$
Does the subgroup contain $-I$? Yes
Generating matrices $ \left[ \begin{matrix} 21 & 20 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 13 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 31 & 30 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 3 \\ 2 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $6$ $X_{11}$
$8$ $24$ $X_{97}$
$16$ $48$ $X_{312}$
Meaning/Special name
Chosen covering $X_{312}$
Curves that $X_{689}$ minimally covers $X_{312}$
Curves that minimally cover $X_{689}$
Curves that minimally cover $X_{689}$ and have infinitely many rational points.
Model \[y^2 = x^3 + x^2 - 3x + 1\]\[w^2 = 2x^2y^2 + 8x^2y - 4xy^2 - 8xy - 2y^3 - 2y^2\]
Info about rational points
Rational pointImage on the $j$-line
$(1 : 0 : 1 : 0)$ Singular
$(-1 : -2 : 1 : 0)$ \[1728 \,\,(\text{CM by }-4)\]
$(0 : -1 : 1 : 0)$ \[1728 \,\,(\text{CM by }-4)\]
$(0 : -1/2 : -1/2 : 1)$ \[1728 \,\,(\text{CM by }-4)\]
$(0 : 1/2 : 1/2 : 1)$ \[1728 \,\,(\text{CM by }-4)\]
$(0 : 0 : 0 : 1)$ Singular
Comments on finding rational points We use the factorization of the elliptic function to construct a family of etale double covers. Each of these maps to a hyperelliptic curve whose Jacobian has rank at most 1. We use the method of Chabauty.
Elliptic curve whose $2$-adic image is the subgroup None
Generic density of odd order reductions N/A

Back to the 2-adic image homepage.