Curve name | $X_{73}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 5 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{26}$ | |||||||||
Curves that $X_{73}$ minimally covers | $X_{26}$, $X_{45}$, $X_{50}$ | |||||||||
Curves that minimally cover $X_{73}$ | $X_{253}$, $X_{267}$, $X_{276}$, $X_{277}$, $X_{348}$, $X_{349}$, $X_{350}$, $X_{351}$ | |||||||||
Curves that minimally cover $X_{73}$ and have infinitely many rational points. | $X_{349}$, $X_{350}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{73}) = \mathbb{Q}(f_{73}), f_{26} = \frac{f_{73}^{2} - 8}{f_{73}^{2} + 8f_{73} + 8}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 787952x + 97113753$, with conductor $16940$ | |||||||||
Generic density of odd order reductions | $1427/5376$ |