Curve name | $X_{50}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{11}$ | |||||||||
Curves that $X_{50}$ minimally covers | $X_{11}$ | |||||||||
Curves that minimally cover $X_{50}$ | $X_{65}$, $X_{69}$, $X_{71}$, $X_{73}$, $X_{90}$, $X_{91}$, $X_{113}$, $X_{114}$, $X_{125}$, $X_{131}$, $X_{134}$, $X_{141}$, $X_{152}$, $X_{154}$, $X_{155}$, $X_{156}$, $X_{170}$, $X_{171}$ | |||||||||
Curves that minimally cover $X_{50}$ and have infinitely many rational points. | $X_{65}$, $X_{69}$, $X_{71}$, $X_{73}$, $X_{90}$, $X_{91}$, $X_{113}$, $X_{114}$, $X_{155}$, $X_{156}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{50}) = \mathbb{Q}(f_{50}), f_{11} = f_{50}^{2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 248453x - 47558454$, with conductor $71148$ | |||||||||
Generic density of odd order reductions | $2659/10752$ |