Curve name | $X_{79d}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{79}$ | |||||||||
Curves that $X_{79d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{79d}$ | ||||||||||
Curves that minimally cover $X_{79d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -3564t^{8} - 15552t^{7} - 25056t^{6} - 10368t^{5} + 11232t^{4} - 20736t^{3} - 100224t^{2} - 124416t - 57024\] \[B(t) = -81648t^{12} - 528768t^{11} - 1353024t^{10} - 1085184t^{9} + 3063744t^{8} + 12026880t^{7} + 21772800t^{6} + 24053760t^{5} + 12254976t^{4} - 8681472t^{3} - 21648384t^{2} - 16920576t - 5225472\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 4268x + 24208$, with conductor $2240$ | |||||||||
Generic density of odd order reductions | $419/2688$ |