Curve name | $X_{79}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{32}$ | |||||||||
Curves that $X_{79}$ minimally covers | $X_{32}$, $X_{34}$, $X_{44}$ | |||||||||
Curves that minimally cover $X_{79}$ | $X_{226}$, $X_{333}$, $X_{334}$, $X_{368}$, $X_{369}$, $X_{79a}$, $X_{79b}$, $X_{79c}$, $X_{79d}$, $X_{79e}$, $X_{79f}$, $X_{79g}$, $X_{79h}$, $X_{79i}$, $X_{79j}$ | |||||||||
Curves that minimally cover $X_{79}$ and have infinitely many rational points. | $X_{226}$, $X_{79a}$, $X_{79b}$, $X_{79c}$, $X_{79d}$, $X_{79e}$, $X_{79f}$, $X_{79g}$, $X_{79h}$, $X_{79i}$, $X_{79j}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{79}) = \mathbb{Q}(f_{79}), f_{32} = \frac{4f_{79}^{2} - 8}{f_{79}^{2} + 4f_{79} + 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 117603x - 15523002$, with conductor $10080$ | |||||||||
Generic density of odd order reductions | $289/1792$ |