Curve name | $X_{80}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{23}$ | |||||||||
Curves that $X_{80}$ minimally covers | $X_{23}$, $X_{39}$, $X_{41}$ | |||||||||
Curves that minimally cover $X_{80}$ | $X_{224}$, $X_{261}$, $X_{262}$, $X_{263}$, $X_{264}$, $X_{366}$, $X_{400}$ | |||||||||
Curves that minimally cover $X_{80}$ and have infinitely many rational points. | $X_{224}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{80}) = \mathbb{Q}(f_{80}), f_{23} = \frac{f_{80}}{f_{80}^{2} + \frac{1}{8}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 183x - 765$, with conductor $5376$ | |||||||||
Generic density of odd order reductions | $401/1792$ |