Curve name | $X_{23}$ | ||||||
Index | $12$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 2 & 3 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | $X_{s}^{+}(4)$ | ||||||
Chosen covering | $X_{11}$ | ||||||
Curves that $X_{23}$ minimally covers | $X_{11}$ | ||||||
Curves that minimally cover $X_{23}$ | $X_{58}$, $X_{60}$, $X_{64}$, $X_{65}$, $X_{68}$, $X_{69}$, $X_{76}$, $X_{80}$, $X_{127}$, $X_{136}$, $X_{146}$, $X_{148}$ | ||||||
Curves that minimally cover $X_{23}$ and have infinitely many rational points. | $X_{58}$, $X_{60}$, $X_{64}$, $X_{65}$, $X_{68}$, $X_{69}$, $X_{76}$, $X_{80}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{23}) = \mathbb{Q}(f_{23}), f_{11} = \frac{8}{f_{23}^{2} - 1}\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 128x + 540$, with conductor $1176$ | ||||||
Generic density of odd order reductions | $25/112$ |