Curve name | $X_{84o}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{84}$ | |||||||||
Curves that $X_{84o}$ minimally covers | ||||||||||
Curves that minimally cover $X_{84o}$ | ||||||||||
Curves that minimally cover $X_{84o}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 216t^{10} - 270t^{8} + 1404t^{6} + 4077t^{4} + 2916t^{2} - 108\] \[B(t) = 54t^{18} + 648t^{16} + 5022t^{14} + 26460t^{12} + 82458t^{10} + 138672t^{8} + 103194t^{6} - 324t^{4} - 29160t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 2892x + 512624$, with conductor $2880$ | |||||||||
Generic density of odd order reductions | $25/224$ |