Curve name | $X_{84}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{36}$ | |||||||||
Curves that $X_{84}$ minimally covers | $X_{36}$ | |||||||||
Curves that minimally cover $X_{84}$ | $X_{195}$, $X_{199}$, $X_{201}$, $X_{206}$, $X_{227}$, $X_{228}$, $X_{336}$, $X_{346}$, $X_{84a}$, $X_{84b}$, $X_{84c}$, $X_{84d}$, $X_{84e}$, $X_{84f}$, $X_{84g}$, $X_{84h}$, $X_{84i}$, $X_{84j}$, $X_{84k}$, $X_{84l}$, $X_{84m}$, $X_{84n}$, $X_{84o}$, $X_{84p}$ | |||||||||
Curves that minimally cover $X_{84}$ and have infinitely many rational points. | $X_{195}$, $X_{199}$, $X_{227}$, $X_{228}$, $X_{84a}$, $X_{84b}$, $X_{84c}$, $X_{84d}$, $X_{84e}$, $X_{84f}$, $X_{84g}$, $X_{84h}$, $X_{84i}$, $X_{84j}$, $X_{84k}$, $X_{84l}$, $X_{84m}$, $X_{84n}$, $X_{84o}$, $X_{84p}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{84}) = \mathbb{Q}(f_{84}), f_{36} = \frac{-4}{f_{84}^{2} + 1}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 1989x - 458150$, with conductor $1989$ | |||||||||
Generic density of odd order reductions | $83/672$ |