Curve name | $X_{92b}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{92}$ | ||||||||||||
Curves that $X_{92b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{92b}$ | |||||||||||||
Curves that minimally cover $X_{92b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} + 1566t^{10} - 405t^{8} - 3996t^{6} - 405t^{4} + 1566t^{2} - 27\] \[B(t) = 54t^{18} + 6966t^{16} - 35640t^{14} - 52920t^{12} + 67716t^{10} + 67716t^{8} - 52920t^{6} - 35640t^{4} + 6966t^{2} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + 102241x - 43492993$, with conductor $2535$ | ||||||||||||
Generic density of odd order reductions | $17/168$ |