Curve name | $X_{27}$ | ||||||
Index | $12$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | |||||||
Chosen covering | $X_{10}$ | ||||||
Curves that $X_{27}$ minimally covers | $X_{10}$, $X_{11}$, $X_{13}$ | ||||||
Curves that minimally cover $X_{27}$ | $X_{60}$, $X_{92}$, $X_{94}$, $X_{95}$, $X_{134}$, $X_{135}$, $X_{27a}$, $X_{27b}$, $X_{27c}$, $X_{27d}$, $X_{27e}$, $X_{27f}$, $X_{27g}$, $X_{27h}$ | ||||||
Curves that minimally cover $X_{27}$ and have infinitely many rational points. | $X_{60}$, $X_{92}$, $X_{94}$, $X_{95}$, $X_{27a}$, $X_{27b}$, $X_{27c}$, $X_{27d}$, $X_{27e}$, $X_{27f}$, $X_{27g}$, $X_{27h}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{27}) = \mathbb{Q}(f_{27}), f_{10} = \frac{f_{27}}{f_{27}^{2} - \frac{1}{4}}\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 885x - 4294$, with conductor $1845$ | ||||||
Generic density of odd order reductions | $9/56$ |