| Curve name |
$X_{92f}$ |
| Index |
$48$ |
| Level |
$16$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{92}$ |
| Curves that $X_{92f}$ minimally covers |
|
| Curves that minimally cover $X_{92f}$ |
|
| Curves that minimally cover $X_{92f}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{14} + 1566t^{12} - 405t^{10} - 3996t^{8} - 405t^{6} + 1566t^{4} -
27t^{2}\]
\[B(t) = 54t^{21} + 6966t^{19} - 35640t^{17} - 52920t^{15} + 67716t^{13} +
67716t^{11} - 52920t^{9} - 35640t^{7} + 6966t^{5} + 54t^{3}\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 + 58891092x + 601364913968$, with conductor $486720$ |
| Generic density of odd order reductions |
$307/2688$ |