## The modular curve $X_{92g}$

Curve name $X_{92g}$
Index $48$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $\left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$
Images in lower levels
 Level Index of image Corresponding curve $2$ $3$ $X_{6}$ $4$ $12$ $X_{27}$
Meaning/Special name
Chosen covering $X_{92}$
Curves that $X_{92g}$ minimally covers
Curves that minimally cover $X_{92g}$
Curves that minimally cover $X_{92g}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by $y^2 = x^3 + A(t)x + B(t), \text{ where}$ $A(t) = -108t^{8} + 6480t^{6} - 14472t^{4} + 6480t^{2} - 108$ $B(t) = 432t^{12} + 54432t^{10} - 449712t^{8} + 762048t^{6} - 449712t^{4} + 54432t^{2} + 432$
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - x^2 + 38719x - 10150719$, with conductor $12480$
Generic density of odd order reductions $307/2688$