Curve name | $X_{92j}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{92}$ | ||||||||||||
Curves that $X_{92j}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{92j}$ | |||||||||||||
Curves that minimally cover $X_{92j}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{18} + 1620t^{16} - 3564t^{14} - 1620t^{12} + 7182t^{10} - 1620t^{8} - 3564t^{6} + 1620t^{4} - 27t^{2}\] \[B(t) = 54t^{27} + 6804t^{25} - 56376t^{23} + 74844t^{21} + 112590t^{19} - 258552t^{17} + 258552t^{13} - 112590t^{11} - 74844t^{9} + 56376t^{7} - 6804t^{5} - 54t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 23004333x + 146811854866$, with conductor $38025$ | ||||||||||||
Generic density of odd order reductions | $307/2688$ |