Curve name | $X_{94a}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 12 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 12 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 12 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{94}$ | ||||||||||||
Curves that $X_{94a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{94a}$ | |||||||||||||
Curves that minimally cover $X_{94a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 81t^{20} + 3240t^{19} + 52704t^{18} + 419904t^{17} + 1166400t^{16} - 7796736t^{15} - 88915968t^{14} - 351682560t^{13} - 308551680t^{12} + 3084189696t^{11} + 14686617600t^{10} + 24673517568t^{9} - 19747307520t^{8} - 180061470720t^{7} - 364199804928t^{6} - 255483445248t^{5} + 305764761600t^{4} + 880602513408t^{3} + 884226392064t^{2} + 434865438720t + 86973087744\] \[B(t) = 3888t^{29} + 225504t^{28} + 5906304t^{27} + 91632384t^{26} + 921922560t^{25} + 6081454080t^{24} + 23728619520t^{23} + 20145438720t^{22} - 356136321024t^{21} - 2225808211968t^{20} - 5205347794944t^{19} + 6482467749888t^{18} + 83018190422016t^{17} + 226494227939328t^{16} - 1811953823514624t^{14} - 5313164187009024t^{13} - 3319023487942656t^{12} + 21321104568090624t^{11} + 72935283489767424t^{10} + 93358999738515456t^{9} - 42248047102525440t^{8} - 398100175068856320t^{7} - 816238949553930240t^{6} - 989906811161149440t^{5} - 787116185069027328t^{4} - 405878120323743744t^{3} - 123972135054999552t^{2} - 17099604835172352t\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 700700x - 620144000$, with conductor $39200$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |