| Curve name | 
$X_{96d}$ | 
| Index | 
$48$ | 
| Level | 
$16$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
No | 
| Generating matrices | 
$
\left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 1 & 2 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 10 \\ 0 & 1 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{96}$ | 
| Curves that $X_{96d}$ minimally covers  | 
 | 
| Curves that minimally cover $X_{96d}$ | 
 | 
| Curves that minimally cover $X_{96d}$ and have infinitely many rational 
points. | 
 | 
| Model | 
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{18} + 81t^{14} - 108t^{10} + 81t^{6} - 27t^{2}\]
\[B(t) = 54t^{27} - 243t^{23} + 324t^{19} - 324t^{11} + 243t^{7} - 54t^{3}\]
 | 
| Info about rational points | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 + xy = x^3 - x^2 - 308953917x + 2090263140616$, with conductor 
$38025$ | 
| Generic density of odd order reductions | 
$307/2688$ |