| Curve name |
$X_{96j}$ |
| Index |
$48$ |
| Level |
$16$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{96}$ |
| Curves that $X_{96j}$ minimally covers |
|
| Curves that minimally cover $X_{96j}$ |
|
| Curves that minimally cover $X_{96j}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{14} - 54t^{12} + 54t^{8} - 54t^{4} - 27t^{2}\]
\[B(t) = 54t^{21} + 162t^{19} + 81t^{17} - 189t^{15} - 324t^{13} - 324t^{11} -
189t^{9} + 81t^{7} + 162t^{5} + 54t^{3}\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 - 11196588x - 12196654288$, with conductor $486720$ |
| Generic density of odd order reductions |
$307/2688$ |