| Curve name | 
$X_{99f}$ | 
| Index | 
$48$ | 
| Level | 
$8$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
No | 
| Generating matrices | 
$
\left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 6 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{99}$ | 
| Curves that $X_{99f}$ minimally covers  | 
 | 
| Curves that minimally cover $X_{99f}$ | 
 | 
| Curves that minimally cover $X_{99f}$ and have infinitely many rational 
points. | 
 | 
| Model | 
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{16} - 270t^{14} - 1134t^{12} - 2592t^{10} - 3510t^{8} - 2916t^{6}
- 1539t^{4} - 540t^{2} - 108\]
\[B(t) = -54t^{24} - 810t^{22} - 5427t^{20} - 21411t^{18} - 55080t^{16} - 
96228t^{14} - 114345t^{12} - 88209t^{10} - 37098t^{8} - 702t^{6} + 7452t^{4} + 
3240t^{2} + 432\]
 | 
| Info about rational points | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 = x^3 - 180300x - 29302000$, with conductor $14400$ | 
| Generic density of odd order reductions | 
$89/672$ |