| Curve name | $X_{101c}$ | 
| Index | $48$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right],
\left[ \begin{matrix} 7 & 6 \\ 4 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{101}$ | 
| Curves that $X_{101c}$ minimally covers |  | 
| Curves that minimally cover $X_{101c}$ |  | 
| Curves that minimally cover $X_{101c}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -452984832t^{16} + 566231040t^{14} - 297271296t^{12} + 84934656t^{10} -
14376960t^{8} + 1492992t^{6} - 98496t^{4} + 4320t^{2} - 108\]
\[B(t) = -3710851743744t^{24} + 6957847019520t^{22} - 5827196878848t^{20} + 
2873735774208t^{18} - 924089057280t^{16} + 201804742656t^{14} - 
29974855680t^{12} + 2890432512t^{10} - 151953408t^{8} + 359424t^{6} + 
476928t^{4} - 25920t^{2} + 432\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 1383564x - 625494800$, with conductor $28224$ | 
| Generic density of odd order reductions | $635/5376$ |