Curve name | $X_{101c}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{101}$ | |||||||||
Curves that $X_{101c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{101c}$ | ||||||||||
Curves that minimally cover $X_{101c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{16} + 566231040t^{14} - 297271296t^{12} + 84934656t^{10} - 14376960t^{8} + 1492992t^{6} - 98496t^{4} + 4320t^{2} - 108\] \[B(t) = -3710851743744t^{24} + 6957847019520t^{22} - 5827196878848t^{20} + 2873735774208t^{18} - 924089057280t^{16} + 201804742656t^{14} - 29974855680t^{12} + 2890432512t^{10} - 151953408t^{8} + 359424t^{6} + 476928t^{4} - 25920t^{2} + 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 1383564x - 625494800$, with conductor $28224$ | |||||||||
Generic density of odd order reductions | $635/5376$ |