Curve name | $X_{101}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{25}$ | |||||||||
Curves that $X_{101}$ minimally covers | $X_{25}$ | |||||||||
Curves that minimally cover $X_{101}$ | $X_{183}$, $X_{185}$, $X_{188}$, $X_{189}$, $X_{190}$, $X_{192}$, $X_{200}$, $X_{203}$, $X_{245}$, $X_{268}$, $X_{274}$, $X_{279}$, $X_{101a}$, $X_{101b}$, $X_{101c}$, $X_{101d}$, $X_{101e}$, $X_{101f}$, $X_{101g}$, $X_{101h}$, $X_{101i}$, $X_{101j}$, $X_{101k}$, $X_{101l}$, $X_{101m}$, $X_{101n}$, $X_{101o}$, $X_{101p}$ | |||||||||
Curves that minimally cover $X_{101}$ and have infinitely many rational points. | $X_{183}$, $X_{185}$, $X_{188}$, $X_{189}$, $X_{190}$, $X_{192}$, $X_{200}$, $X_{203}$, $X_{101a}$, $X_{101b}$, $X_{101c}$, $X_{101d}$, $X_{101e}$, $X_{101f}$, $X_{101g}$, $X_{101h}$, $X_{101i}$, $X_{101j}$, $X_{101k}$, $X_{101l}$, $X_{101m}$, $X_{101n}$, $X_{101o}$, $X_{101p}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{101}) = \mathbb{Q}(f_{101}), f_{25} = 8f_{101}^{2} - 1\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 1225x - 17000$, with conductor $525$ | |||||||||
Generic density of odd order reductions | $19/168$ |