Curve name | $X_{101d}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{101}$ | |||||||||
Curves that $X_{101d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{101d}$ | ||||||||||
Curves that minimally cover $X_{101d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -110592t^{8} + 55296t^{6} - 8640t^{4} + 432t^{2} - 27\] \[B(t) = -14155776t^{12} + 10616832t^{10} - 2985984t^{8} + 387072t^{6} - 15552t^{4} - 1296t^{2} + 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 49x - 136$, with conductor $21$ | |||||||||
Generic density of odd order reductions | $5/84$ |