Curve name | $X_{101f}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{101}$ | |||||||||
Curves that $X_{101f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{101f}$ | ||||||||||
Curves that minimally cover $X_{101f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -113246208t^{16} + 141557760t^{14} - 74317824t^{12} + 21233664t^{10} - 3594240t^{8} + 373248t^{6} - 24624t^{4} + 1080t^{2} - 27\] \[B(t) = 463856467968t^{24} - 869730877440t^{22} + 728399609856t^{20} - 359216971776t^{18} + 115511132160t^{16} - 25225592832t^{14} + 3746856960t^{12} - 361304064t^{10} + 18994176t^{8} - 44928t^{6} - 59616t^{4} + 3240t^{2} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 345891x + 78186850$, with conductor $7056$ | |||||||||
Generic density of odd order reductions | $41/336$ |