Curve name | $X_{101l}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{101}$ | |||||||||
Curves that $X_{101l}$ minimally covers | ||||||||||
Curves that minimally cover $X_{101l}$ | ||||||||||
Curves that minimally cover $X_{101l}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1769472t^{12} + 1769472t^{10} - 691200t^{8} + 131328t^{6} - 12528t^{4} + 648t^{2} - 27\] \[B(t) = -905969664t^{18} + 1358954496t^{16} - 870580224t^{14} + 309657600t^{12} - 66023424t^{10} + 8294400t^{8} - 508032t^{6} - 2592t^{4} + 1944t^{2} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 7059x - 227950$, with conductor $1008$ | |||||||||
Generic density of odd order reductions | $25/224$ |