Curve name | $X_{101o}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{101}$ | |||||||||
Curves that $X_{101o}$ minimally covers | ||||||||||
Curves that minimally cover $X_{101o}$ | ||||||||||
Curves that minimally cover $X_{101o}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7077888t^{12} + 5308416t^{10} - 1548288t^{8} + 221184t^{6} - 17280t^{4} + 864t^{2} - 27\] \[B(t) = 7247757312t^{18} - 8153726976t^{16} + 3906994176t^{14} - 1040449536t^{12} + 164560896t^{10} - 14598144t^{8} + 483840t^{6} + 25920t^{4} - 2592t^{2} + 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 2402x + 44246$, with conductor $147$ | |||||||||
Generic density of odd order reductions | $25/224$ |