Curve name | $X_{101p}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{101}$ | |||||||||
Curves that $X_{101p}$ minimally covers | ||||||||||
Curves that minimally cover $X_{101p}$ | ||||||||||
Curves that minimally cover $X_{101p}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7077888t^{12} + 7077888t^{10} - 2764800t^{8} + 525312t^{6} - 50112t^{4} + 2592t^{2} - 108\] \[B(t) = -7247757312t^{18} + 10871635968t^{16} - 6964641792t^{14} + 2477260800t^{12} - 528187392t^{10} + 66355200t^{8} - 4064256t^{6} - 20736t^{4} + 15552t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 63720x - 5613300$, with conductor $2070$ | |||||||||
Generic density of odd order reductions | $193/1792$ |