Curve name | $X_{10c}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 2 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{10}$ | |||||||||
Curves that $X_{10c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{10c}$ | ||||||||||
Curves that minimally cover $X_{10c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 324t^{8} + 540t^{6} + 108t^{4} - 108t^{2}\] \[B(t) = 3888t^{11} + 12096t^{9} + 12960t^{7} + 5184t^{5} + 432t^{3}\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 92x + 312$, with conductor $100$ | |||||||||
Generic density of odd order reductions | $2659/10752$ |