Curve name | $X_{10}$ | ||||||
Index | $6$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | Elliptic curves that acquire full $2$-torsion over $\mathbb{Q}(i)$ | ||||||
Chosen covering | $X_{6}$ | ||||||
Curves that $X_{10}$ minimally covers | $X_{3}$, $X_{6}$ | ||||||
Curves that minimally cover $X_{10}$ | $X_{27}$, $X_{42}$, $X_{10a}$, $X_{10b}$, $X_{10c}$, $X_{10d}$ | ||||||
Curves that minimally cover $X_{10}$ and have infinitely many rational points. | $X_{27}$, $X_{42}$, $X_{10a}$, $X_{10b}$, $X_{10c}$, $X_{10d}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{10}) = \mathbb{Q}(f_{10}), f_{6} = \frac{48f_{10}^{2} - 16}{f_{10}^{2} + 1}\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 33x - 74$, with conductor $180$ | ||||||
Generic density of odd order reductions | $83/336$ |