Curve name | $X_{115c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 4 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{115}$ | ||||||||||||
Curves that $X_{115c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{115c}$ | |||||||||||||
Curves that minimally cover $X_{115c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1728t^{16} - 7776t^{12} - 5292t^{8} - 1296t^{4} - 108\] \[B(t) = 27648t^{24} - 186624t^{20} - 316224t^{16} - 190512t^{12} - 55080t^{8} - 7776t^{4} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 10700x - 426000$, with conductor $1600$ | ||||||||||||
Generic density of odd order reductions | $419/2688$ |