Curve name | $X_{115}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 12 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{32}$ | ||||||||||||
Curves that $X_{115}$ minimally covers | $X_{32}$ | ||||||||||||
Curves that minimally cover $X_{115}$ | $X_{314}$, $X_{334}$, $X_{115a}$, $X_{115b}$, $X_{115c}$, $X_{115d}$, $X_{115e}$, $X_{115f}$, $X_{115g}$, $X_{115h}$ | ||||||||||||
Curves that minimally cover $X_{115}$ and have infinitely many rational points. | $X_{115a}$, $X_{115b}$, $X_{115c}$, $X_{115d}$, $X_{115e}$, $X_{115f}$, $X_{115g}$, $X_{115h}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{115}) = \mathbb{Q}(f_{115}), f_{32} = \frac{2}{f_{115}^{2}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 18x - 27$, with conductor $360$ | ||||||||||||
Generic density of odd order reductions | $13/84$ |