Curve name | $X_{115d}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 4 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{115}$ | ||||||||||||
Curves that $X_{115d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{115d}$ | |||||||||||||
Curves that minimally cover $X_{115d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -432t^{16} - 1944t^{12} - 1323t^{8} - 324t^{4} - 27\] \[B(t) = 3456t^{24} - 23328t^{20} - 39528t^{16} - 23814t^{12} - 6885t^{8} - 972t^{4} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 2675x - 53250$, with conductor $200$ | ||||||||||||
Generic density of odd order reductions | $103/672$ |