Curve name | $X_{116c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 9 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 12 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{116}$ | ||||||||||||
Curves that $X_{116c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{116c}$ | |||||||||||||
Curves that minimally cover $X_{116c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 5184t^{12} - 84672t^{8} - 497664t^{4} - 442368\] \[B(t) = 432t^{24} + 31104t^{20} + 881280t^{16} + 12192768t^{12} + 80953344t^{8} + 191102976t^{4} - 113246208\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 59548304x + 176849350920$, with conductor $161376$ | ||||||||||||
Generic density of odd order reductions | $149/896$ |