Curve name | $X_{116}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 12 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{32}$ | ||||||||||||
Curves that $X_{116}$ minimally covers | $X_{32}$ | ||||||||||||
Curves that minimally cover $X_{116}$ | $X_{241}$, $X_{242}$, $X_{316}$, $X_{333}$, $X_{407}$, $X_{408}$, $X_{116a}$, $X_{116b}$, $X_{116c}$, $X_{116d}$, $X_{116e}$, $X_{116f}$, $X_{116g}$, $X_{116h}$, $X_{116i}$, $X_{116j}$, $X_{116k}$, $X_{116l}$ | ||||||||||||
Curves that minimally cover $X_{116}$ and have infinitely many rational points. | $X_{241}$, $X_{242}$, $X_{116a}$, $X_{116b}$, $X_{116c}$, $X_{116d}$, $X_{116e}$, $X_{116f}$, $X_{116g}$, $X_{116h}$, $X_{116i}$, $X_{116j}$, $X_{116k}$, $X_{116l}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{116}) = \mathbb{Q}(f_{116}), f_{32} = -f_{116}^{2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 4101x + 100723$, with conductor $7275$ | ||||||||||||
Generic density of odd order reductions | $289/1792$ |