Curve name | $X_{150}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 3 \\ 10 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 13 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 4 & 13 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 12 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{45}$ | ||||||||||||
Curves that $X_{150}$ minimally covers | $X_{45}$ | ||||||||||||
Curves that minimally cover $X_{150}$ | $X_{312}$, $X_{323}$, $X_{364}$, $X_{373}$, $X_{376}$, $X_{384}$, $X_{392}$, $X_{397}$, $X_{401}$, $X_{403}$ | ||||||||||||
Curves that minimally cover $X_{150}$ and have infinitely many rational points. | $X_{312}$, $X_{323}$ | ||||||||||||
Model | \[y^2 = x^3 + x^2 - 13x - 21\] | ||||||||||||
Info about rational points | $X_{150}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | None. All the rational points lift to covering modular curves. | ||||||||||||
Generic density of odd order reductions | N/A |