Curve name | $X_{312}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 10 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 4 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 13 & 7 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{97}$ | ||||||||||||
Curves that $X_{312}$ minimally covers | $X_{97}$, $X_{110}$, $X_{150}$ | ||||||||||||
Curves that minimally cover $X_{312}$ | $X_{635}$, $X_{637}$, $X_{686}$, $X_{689}$ | ||||||||||||
Curves that minimally cover $X_{312}$ and have infinitely many rational points. | |||||||||||||
Model | \[y^2 = x^3 + x^2 - 3x + 1\] | ||||||||||||
Info about rational points | $X_{312}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 13804780x + 191741059200$, with conductor $173600$ | ||||||||||||
Generic density of odd order reductions | $42979/172032$ |