Curve name | $X_{185f}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{185}$ | |||||||||
Curves that $X_{185f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{185f}$ | ||||||||||
Curves that minimally cover $X_{185f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} - 6856704t^{20} - 7050240t^{16} - 2681856t^{12} - 440640t^{8} - 26784t^{4} - 108\] \[B(t) = 113246208t^{36} - 3482320896t^{32} - 10022289408t^{28} - 9314500608t^{24} - 4238770176t^{20} - 1059692544t^{16} - 145539072t^{12} - 9787392t^{8} - 212544t^{4} + 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 216033x - 38556063$, with conductor $4800$ | |||||||||
Generic density of odd order reductions | $109/896$ |