Curve name | $X_{185}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{87}$ | |||||||||
Curves that $X_{185}$ minimally covers | $X_{87}$, $X_{96}$, $X_{101}$ | |||||||||
Curves that minimally cover $X_{185}$ | $X_{442}$, $X_{452}$, $X_{456}$, $X_{458}$, $X_{485}$, $X_{486}$, $X_{185a}$, $X_{185b}$, $X_{185c}$, $X_{185d}$, $X_{185e}$, $X_{185f}$, $X_{185g}$, $X_{185h}$, $X_{185i}$, $X_{185j}$, $X_{185k}$, $X_{185l}$ | |||||||||
Curves that minimally cover $X_{185}$ and have infinitely many rational points. | $X_{185a}$, $X_{185b}$, $X_{185c}$, $X_{185d}$, $X_{185e}$, $X_{185f}$, $X_{185g}$, $X_{185h}$, $X_{185i}$, $X_{185j}$, $X_{185k}$, $X_{185l}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{185}) = \mathbb{Q}(f_{185}), f_{87} = \frac{f_{185}}{f_{185}^{2} - \frac{1}{2}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 6616x + 206471$, with conductor $735$ | |||||||||
Generic density of odd order reductions | $25/224$ |