Curve name | $X_{185h}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{185}$ | |||||||||
Curves that $X_{185h}$ minimally covers | ||||||||||
Curves that minimally cover $X_{185h}$ | ||||||||||
Curves that minimally cover $X_{185h}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -6912t^{16} - 103680t^{12} - 57888t^{8} - 6480t^{4} - 27\] \[B(t) = 221184t^{24} - 6967296t^{20} - 14390784t^{16} - 6096384t^{12} - 899424t^{8} - 27216t^{4} + 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 135x - 660$, with conductor $15$ | |||||||||
Generic density of odd order reductions | $19/336$ |